[2] A. Robledo, C. Velarde, How, Why and When Tsallis Statistical Mechanics Provides Precise Descriptions of Natural Phenomena, Entropy. 24 (2022) 1761. https://doi.org/10.3390/e24121761.
[3] C. Velarde, A. Robledo, Statistical mechanical model for growth and spread of contagions under gauged population confinement, Physica A: Statistical Mechanics and Its Applications. 573 (2021) 125960. https://doi.org/10.1016/j.physa.2021.125960.
[4] A. Diaz-Ruelas, F. Baldovin, A. Robledo, Logistic map trajectory distributions: Renormalization-group, entropy, and criticality at the transition to chaos, Chaos. 31 (2021) 033112. https://doi.org/10.1063/5.0040544.
[5] A. Robledo, L.J. Camacho-Vidales, A zodiac of studies on complex systems, Supl. Rev. Mex. Fis. 1 (2020) 32–53. https://doi.org/10.31349/SuplRevMexFis.1.4.32.
[6] V. Domínguez-Rocha, R.A. Méndez-Sánchez, M. Martínez-Mares, A. Robledo, Invariant density of intermittent nonlinear maps descriptive of coherent quantum transport through disorderless lattices, Physica D: Nonlinear Phenomena. 412 (2020) 132623. https://doi.org/10.1016/j.physd.2020.132623.
[7] C. Velarde, A. Robledo, Dynamical analogues of rank distributions, PLoS ONE. 14 (2019) e0211226. https://doi.org/10.1371/journal.pone.0211226.
[8] C. Velarde, A. Robledo, Manifestations of the onset of chaos in condensed matter and complex systems, Eur. Phys. J. Spec. Top. 227 (2018) 645–660. https://doi.org/10.1140/epjst/e2018-00128-9.
[9] A. Robledo, Self-organization and a constrained thermal system analogue of the onset of chaos, EPL. 123 (2018) 40003. https://doi.org/10.1209/0295-5075/123/40003.
[10] C. Velarde, A. Robledo, Rank distributions: Frequency vs. magnitude, PLoS ONE. 12 (2017) e0186015. https://doi.org/10.1371/journal.pone.0186015.
[11] M. Dehmer, F. Emmert-Streib, Z. Chen, X. Li, Y. Shi, eds., Mathematical foundations and applications of graph entropy, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2016.
[12] G.C. Yalcin, C. Velarde, A. Robledo, Entropies for severely contracted configuration space, Heliyon. 1 (2015) e00045. https://doi.org/10.1016/j.heliyon.2015.e00045.
[13] G.C. Yalcin, A. Robledo, M. Gell-Mann, Incidence of q statistics in rank distributions, Proc. Natl. Acad. Sci. U.S.A. 111 (2014) 14082–14087. https://doi.org/10.1073/pnas.1412093111.
[14] M.A. Fuentes, A. Robledo, Sums of variables at the onset of chaos, Eur. Phys. J. B. 87 (2014) 32. https://doi.org/10.1140/epjb/e2014-40882-1.
[15] A. Diaz-Ruelas, A. Robledo, Emergent statistical-mechanical structure in the dynamics along the period-doubling route to chaos, EPL. 105 (2014) 40004. https://doi.org/10.1209/0295-5075/105/40004.
[16] A. Díaz-Ruelas, M.A. Fuentes, A. Robledo, Scaling of distributions of sums of positions for chaotic dynamics at band-splitting points, EPL. 108 (2014) 20008. https://doi.org/10.1209/0295-5075/108/20008.
[17] A. Robledo, Generalized Statistical Mechanics at the Onset of Chaos, Entropy. 15 (2013) 5178–5222. https://doi.org/10.3390/e15125178.
[18] Á.M. Núñez, B. Luque, L. Lacasa, J.P. Gómez, A. Robledo, Horizontal visibility graphs generated by type-I intermittency, Phys. Rev. E. 87 (2013) 052801. https://doi.org/10.1103/PhysRevE.87.052801.
[19] B. Luque, M. Cordero-Gracia, M. Gómez, A. Robledo, Quasiperiodic graphs at the onset of chaos, Phys. Rev. E. 88 (2013) 062918. https://doi.org/10.1103/PhysRevE.88.062918.
[20] B. Luque, F.J. Ballesteros, A.M. Núñez, A. Robledo, Quasiperiodic Graphs: Structural Design, Scaling and Entropic Properties, J Nonlinear Sci. 23 (2013) 335–342. https://doi.org/10.1007/s00332-012-9153-2.
[21] J. Velázquez, A. Robledo, Statistical-mechanical structure for renewal stochastic processes, International Journal of Applied Mathematics and StatisticsTM. 26 (2012) 3–15.
[22] A. Robledo, A dynamical model for hierarchy and modular organization: The trajectories en route to the attractor at the transition to chaos, J. Phys.: Conf. Ser. 394 (2012) 012007. https://doi.org/10.1088/1742-6596/394/1/012007.
[23] B. Luque, L. Lacasa, A. Robledo, Feigenbaum graphs at the onset of chaos, Physics Letters A. 376 (2012) 3625–3629. https://doi.org/10.1016/j.physleta.2012.10.050.
[24] B. Luque, L. Lacasa, F.J. Ballesteros, A. Robledo, Analytical properties of horizontal visibility graphs in the Feigenbaum scenario, Chaos: An Interdisciplinary Journal of Nonlinear Science. 22 (2012) 013109. https://doi.org/10.1063/1.3676686.
[25] Y. Jiang, M. Martínez-Mares, E. Castaño, A. Robledo, Möbius transformations and electronic transport properties of large disorderless networks, Phys. Rev. E. 85 (2012) 057202. https://doi.org/10.1103/PhysRevE.85.057202.
[26] D. Vilone, A. Robledo, A. Sánchez, Chaos and Unpredictability in Evolutionary Dynamics in Discrete Time, Phys. Rev. Lett. 107 (2011) 038101. https://doi.org/10.1103/PhysRevLett.107.038101.
[27] J. Velázquez, A. Robledo, Renewal stochastic processes with correlated events: Phase transitions along time evolution, Phys. Rev. E. 83 (2011) 031103. https://doi.org/10.1103/PhysRevE.83.031103.
[28] B. Luque, L. Lacasa, F.J. Ballesteros, A. Robledo, Feigenbaum Graphs: A Complex Network Perspective of Chaos, PLoS ONE. 6 (2011) e22411. https://doi.org/10.1371/journal.pone.0022411.
[29] C. Altamirano, A. Robledo, Possible thermodynamic structure underlying the laws of Zipf and Benford, Eur. Phys. J. B. 81 (2011) 345–351. https://doi.org/10.1140/epjb/e2011-10968-5.
[30] M.A. Fuentes, A. Robledo, Renormalization group structure for sums of variables generated by incipiently chaotic maps, J. Stat. Mech. 2010 (2010) P01001. https://doi.org/10.1088/1742-5468/2010/01/P01001.
[31] M. Martínez-Mares, A. Robledo, Equivalence between the mobility edge of electronic transport on disorderless networks and the onset of chaos via intermittency in deterministic maps, Phys. Rev. E. 80 (2009) 045201. https://doi.org/10.1103/PhysRevE.80.045201.
[32] A. Robledo, L.G. Moyano, q -deformed statistical-mechanical property in the dynamics of trajectories en route to the Feigenbaum attractor, Phys. Rev. E. 77 (2008) 036213. https://doi.org/10.1103/PhysRevE.77.036213.
[33] A. Robledo, Incidence of nonextensive thermodynamics in temporal scaling at Feigenbaum points, Physica A: Statistical Mechanics and Its Applications. 370 (2006) 449–460. https://doi.org/10.1016/j.physa.2006.06.003.
[34] H. Hernández-Saldaña, A. Robledo, Fluctuating dynamics at the quasiperiodic onset of chaos, Tsallis -statistics and Mori’s -phase thermodynamics, Physica A: Statistical Mechanics and Its Applications. 370 (2006) 286–300. https://doi.org/10.1016/j.physa.2006.03.018.
[35] A. Robledo, Unorthodox properties of critical clusters, Molecular Physics. 103 (2005) 3025–3030. https://doi.org/10.1080/00268970500185989.
[36] A. Robledo, Critical attractors and q-statistics, Europhysics News. 36 (2005) 214–218. https://doi.org/10.1051/epn:2005611.
[37] E. Mayoral, A. Robledo, Tsallis’ q index and Mori’s q phase transitions at the edge of chaos, Phys. Rev. E. 72 (2005) 026209. https://doi.org/10.1103/PhysRevE.72.026209.
[38] F. Baldovin, A. Robledo, Parallels between the dynamics at the noise-perturbed onset of chaos in logistic maps and the dynamics of glass formation, Phys. Rev. E. 72 (2005) 066213. https://doi.org/10.1103/PhysRevE.72.066213.
[39] A. Robledo, Universal glassy dynamics at noise-perturbed onset of chaos: a route to ergodicity breakdown, Physics Letters A. 328 (2004) 467–472. https://doi.org/10.1016/j.physleta.2004.06.062.
[40] A. Robledo, Criticality in nonlinear one-dimensional maps: RG universal map and nonextensive entropy, Physica D: Nonlinear Phenomena. 193 (2004) 153–160. https://doi.org/10.1016/j.physd.2004.01.016.
[41] F. Baldovin, A. Robledo, Nonextensive Pesin identity: Exact renormalization group analytical results for the dynamics at the edge of chaos of the logistic map, Phys. Rev. E. 69 (2004) 045202. https://doi.org/10.1103/PhysRevE.69.045202.
[42] C. Varea, A. Robledo, Stability of curved amphiphilic interfaces, Physica A: Statistical Mechanics and Its Applications. 306 (2002) 301–315. https://doi.org/10.1016/S0378-4371(02)00507-1.
[43] A. Robledo, J. Quintana, Scale-invariant random-walks and optimization of non-extensive entropy, Chaos, Solitons & Fractals. 13 (2002) 521–528. https://doi.org/10.1016/S0960-0779(01)00035-2.
[44] A. Robledo, The renormalization group and optimization of non-extensive entropy: criticality in non-linear one-dimensional maps, Physica A: Statistical Mechanics and Its Applications. 314 (2002) 437–441. https://doi.org/10.1016/S0378-4371(02)01177-9.
[45] J. Quintana, A. Robledo, Surface transitions under confinement, J. Phys.: Condens. Matter. 14 (2002) 2211–2221. https://doi.org/10.1088/0953-8984/14/9/310.
[46] F. Baldovin, A. Robledo, Universal renormalization-group dynamics at the onset of chaos in logistic maps and nonextensive statistical mechanics, Phys. Rev. E. 66 (2002) 045104. https://doi.org/10.1103/PhysRevE.66.045104.
[47] F. Baldovin, A. Robledo, Sensitivity to initial conditions at bifurcations in one-dimensional nonlinear maps: Rigorous nonextensive solutions, Europhys. Lett. 60 (2002) 518–524. https://doi.org/10.1209/epl/i2002-00249-7.
[48] C. Varea, A. Robledo, Fluctuations and instabilities of model amphiphile interfaces, Physica A: Statistical Mechanics and Its Applications. 290 (2001) 360–378. https://doi.org/10.1016/S0378-4371(00)00461-1.
[49] C. Varea, A. Robledo, Theory of interfacial bending constants, J. Phys.: Condens. Matter. 13 (2001) 9075–9088. https://doi.org/10.1088/0953-8984/13/41/303.
[50] A. Robledo, J. Quintana, Anomalous transport, the renormalization group and optimization of entropy, Granular Matter. 3 (2001) 29–32. https://doi.org/10.1007/s100350000064.
[51] J. Quintana, A. Robledo, Confinement induced immiscibility of mixtures of enantiomers, Physica A: Statistical Mechanics and Its Applications. 295 (2001) 333–347. https://doi.org/10.1016/S0378-4371(01)00129-7.
[52] A. Robledo, The Renormalization Group and Optimization of Entropy, Journal of Statistical Physics. 100 (2000) 475–487. https://doi.org/10.1023/A:1018620618862.
[53] C. Varea, A. Robledo, Density fluctuations and correlations of confined fluids, Physica A: Statistical Mechanics and Its Applications. 268 (1999) 391–411. https://doi.org/10.1016/S0378-4371(99)00049-7.
[54] A. Robledo, Renormalization Group, Entropy Optimization, and Nonextensivity at Criticality, Phys. Rev. Lett. 83 (1999) 2289–2292. https://doi.org/10.1103/PhysRevLett.83.2289.
[55] C. Varea, A. Robledo, Fluctuations and instabilities of curved interfaces, Physica A: Statistical Mechanics and Its Applications. 255 (1998) 269–284. https://doi.org/10.1016/S0378-4371(97)00670-5.
[56] A. Robledo, J. Quintana, Landau density functional theory for one-dimensional inhomogeneities, Physica A: Statistical Mechanics and Its Applications. 257 (1998) 197–206. https://doi.org/10.1016/S0378-4371(98)00140-X.
[57] J. Quintana, A. Robledo, Phase properties of nematics confined by competing walls, Physica A: Statistical Mechanics and Its Applications. 248 (1998) 28–43. https://doi.org/10.1016/S0378-4371(97)00523-2.
[58] J. Quintana, A. Robledo, Kinetics of phase change in binary mixtures with complete wetting interfaces, Molecular Physics. 95 (1998) 587–593. https://doi.org/10.1080/00268979809483192.
[59] C. Varea, J. Campos-Terán, A. Robledo, Spinodal decomposition under confinement, Physica A: Statistical Mechanics and Its Applications. 244 (1997) 440–452. https://doi.org/10.1016/S0378-4371(97)00228-8.
[60] A. Robledo, C. Varea, Interfacial width and shape fluctuations and extensions of the Gaussian model of capillary waves, J Stat Phys. 89 (1997) 273–282. https://doi.org/10.1007/BF02770765.
[61] C. Varea, A. Robledo, Stress tensor of inhomogeneous fluids, Physica A: Statistical Mechanics and Its Applications. 233 (1996) 132–144. https://doi.org/10.1016/S0378-4371(96)00244-0.
[62] C. Varea, A. Robledo, Free energy expressions for a spherical interface, Molecular Physics. 85 (1995) 477–496. https://doi.org/10.1080/00268979500101261.
[63] A. Robledo, C. Varea, Scaling properties of the capillary-wave model with interfacial bending rigidity, Molecular Physics. 86 (1995) 879–890. https://doi.org/10.1080/00268979500102451.
[64] A. Robledo, Magnetic anisotropy and superconductivity in a model for high-Tc copper oxides, Physica C: Superconductivity. 220 (1994) 271–283. https://doi.org/10.1016/0921-4534(94)90913-X.
[65] A. Robledo, J.O. Indekeu, Universality and the Contact Line at First-Order Wetting Transitions, Europhys. Lett. 25 (1994) 17–22. https://doi.org/10.1209/0295-5075/25/1/004.
[66] C. Varea, A. Robledo, Magnitude of the prewetting boundary tension near wetting for short-range forces, Phys. Rev. E. 47 (1993) 3772–3775. https://doi.org/10.1103/PhysRevE.47.3772.
[67] V. Romero-Rochín, C. Varea, A. Robledo, Stress tensor of curved interfaces, Molecular Physics. 80 (1993) 821–832. https://doi.org/10.1080/00268979300102681.
[68] P.A. Mello, A. Robledo, Strongly coupled Ising chain under a weak random field, Physica A: Statistical Mechanics and Its Applications. 199 (1993) 363–386. https://doi.org/10.1016/0378-4371(93)90055-9.
[69] J.O. Indekeu, A. Robledo, Hyperscaling and nonclassical exponents for the line tension at wetting, Phys. Rev. E. 47 (1993) 4607–4610. https://doi.org/10.1103/PhysRevE.47.4607.
[70] C. Varea, A. Robledo, Statistical mechanics of the line tension, Physica A: Statistical Mechanics and Its Applications. 183 (1992) 12–24. https://doi.org/10.1016/0378-4371(92)90175-P.
[71] C. Varea, A. Robledo, Evidence for the divergence of the line tension at the wetting transition, Phys. Rev. A. 45 (1992) 2645–2648. https://doi.org/10.1103/PhysRevA.45.2645.
[72] V. Romero-Rochín, C. Varea, A. Robledo, Extended capillary-wave model for the liquid-vapor interface and its width in the limit of vanishing gravity, Physica A: Statistical Mechanics and Its Applications. 184 (1992) 367–392. https://doi.org/10.1016/0378-4371(92)90312-E.
[73] A. Robledo, C. Varea, J.O. Indekeu, Wetting transition for the contact line and Antonov’s rule for the line tension, Phys. Rev. A. 45 (1992) 2423–2427. https://doi.org/10.1103/PhysRevA.45.2423.
[74] V. Romero-Rochn, C. Varea, A. Robledo, Microscopic expressions for interfacial bending constants and spontaneous curvature, Phys. Rev. A. 44 (1991) 8417–8420. https://doi.org/10.1103/PhysRevA.44.8417.
[75] A. Robledo, C. Varea, V. Talanquer, Curvature interfacial transitions in amphiphile monolayers and their possible relation to the onset of micelle formation, Phys. Rev. A. 43 (1991) 5736–5739. https://doi.org/10.1103/PhysRevA.43.5736.
[76] A. Robledo, C. Varea, The hard-sphere order-disorder transition in the bethe continuum, J Stat Phys. 63 (1991) 1163–1176. https://doi.org/10.1007/BF01030004.
[77] A. Robledo, G. Martinez-Mekler, C. Varea, Asymmetric Solubility Loops and Anomalous Geometry at the Lower Critical Point in a Model Micellar Solution, Europhys. Lett. 16 (1991) 405–410. https://doi.org/10.1209/0295-5075/16/4/015.
[78] A. Robledo, C. Varea, Spin-hole model with magnetic vortex-antivortex pairing mechanism for cooper-oxide superconductors, Physica C: Superconductivity. 166 (1990) 334–348. https://doi.org/10.1016/0921-4534(90)90414-A.
[79] G. Martinez-Mekler, G.F. Al-Noaimi, A. Robledo, Uncommon source of corrections to scaling for micellar solution critical behavior, Phys. Rev. A. 41 (1990) 4513–4516. https://doi.org/10.1103/PhysRevA.41.4513.
[80] V. Talanquer, C. Varea, A. Robledo, Sublattice-ordered phases of Griffiths’s three-component model, Phys. Rev. B. 39 (1989) 7016–7029. https://doi.org/10.1103/PhysRevB.39.7016.
[81] V. Talanquer, C. Varea, A. Robledo, Sublattice-ordered phases in a lattice model for a micellar solution, Phys. Rev. B. 39 (1989) 7039–7044. https://doi.org/10.1103/PhysRevB.39.7039.
[82] V. Talanquer, C. Varea, A. Robledo, Global phase diagram for binary alloys with one magnetic component, Phys. Rev. B. 39 (1989) 7030–7038. https://doi.org/10.1103/PhysRevB.39.7030.
[83] C. Varea, A. Robledo, Model for oxygen absortion and structural phase transition in YBa 2 Cu 3 O 7−y, Mod. Phys. Lett. B. 02 (1988) 1017–1023. https://doi.org/10.1142/S0217984988000849.
[84] L.M. Trejo, J. Gracia, C. Varea, A. Robledo, Possibility of Continuous Wetting Transition at the Liquid-Vapour Interface of the Binary Liquid Mixture Cyclohexane + Acetonitrile, Europhys. Lett. 7 (1988) 537–542. https://doi.org/10.1209/0295-5075/7/6/010.
[85] A. Robledo, C. Varea, Spin-hole model for magnetic phase diagram and pairing mechanism in copper-oxide superconductors, Revista Mexicana de Física. 35 (1988) 255–266.
[86] A. Robledo, C. Varea, Simple spin-hole model for magnetic correlations in copper-oxide superconductors, Int. J. Mod. Phys. B. 02 (1988) 763–770. https://doi.org/10.1142/S0217979288000597.
[87] A. Robledo, C. Varea, High- T c superconductivity at twin boundaries in a Landau-Ginzburg superconductor oxide model, Phys. Rev. B. 37 (1988) 631–634. https://doi.org/10.1103/PhysRevB.37.631.
[88] C. Varea, A. Robledo, Critical magnetization at antiphase boundaries of magnetic binary alloys, Phys. Rev. B. 36 (1987) 5561–5566. https://doi.org/10.1103/PhysRevB.36.5561.
[89] A. Robledo, C. Varea, A Nonlocal Theory of Irreversible Thermodynamics. I. Hydrodynamics of a One Component Fluid, Journal of Non-Equilibrium Thermodynamics. 12 (1987). https://doi.org/10.1515/jnet.1987.12.3.213.
[90] A. Robledo, Spin Ising transcription of a lattice model of micellar solutions, Phys. Rev. A. 36 (1987) 4067–4071. https://doi.org/10.1103/PhysRevA.36.4067.
[91] C. Varea, A. Robledo, Relationships between the phase behavior of lattice models of amphiphile mixtures and Griffiths’s three-component model, Phys. Rev. A. 33 (1986) 2760–2768. https://doi.org/10.1103/PhysRevA.33.2760.
[92] C. Varea, A. Robledo, Effect of oxygen pressure and Temperature on the Tetragonal-orthorhombic Transition in a Model YBa2Cu3O7-y, Revista Mexicana de Física. 33 (1986) 311–319.
[93] A. Robledo, J.S. Rowlinson, The distribution of hard rods on a line of finite length, Molecular Physics. 58 (1986) 711–721. https://doi.org/10.1080/00268978600101521.
[94] A. Robledo, Exact Thermodynamic Correspondence between a Lattice Model Microemulsion and Simpler Spin Systems, Europhys. Lett. 1 (1986) 303–312. https://doi.org/10.1209/0295-5075/1/6/006.
[95] J. Gracia, C. Guerrero, J.G. Llanes, A. Robledo, Transient foaminess, aggregate formation and wetting behavior in water-phenol mixtures, J. Phys. Chem. 90 (1986) 1350–1353. https://doi.org/10.1021/j100398a028.
[96] L. Vicente, C. Varea, A. Robledo, Pinning of antiphase boundaries at the cleaved (001) surface of an L20 ordering alloy, Surface Science. 164 (1985) 479–489. https://doi.org/10.1016/0039-6028(85)90761-7.
[97] C. Varea, A. Robledo, E. Martina, Wetting regimes at a semipermeable membrane, Phys. Rev. A. 31 (1985) 1825–1829. https://doi.org/10.1103/PhysRevA.31.1825.
[98] A. Robledo, C. Varea, E. Martina, Interfacial critical phenomena at semipermeable membranes, Phys. Rev. B. 32 (1985) 7545–7547. https://doi.org/10.1103/PhysRevB.32.7545.
[99] A. Robledo, C. Varea, E. Martina, Roughening transition and formation of bicontinuous structures of immiscible solvents embedded in surfactant diblock copolymers, J. Phyique Lett. 46 (1985) 967–972. https://doi.org/10.1051/jphyslet:019850046020096700.
[100] J. Gracia, C. Varea, A. Robledo, Prewetting in partially miscible liquids and the structure and thermodynamics of transient foams and aerosols, J. Phys. Chem. 88 (1984) 3923–3925. https://doi.org/10.1021/j150662a004.
[101] M.E. Costas, C. Varea, A. Robledo, Global Phase Diagram for the Wetting Transition at Interfaces in Fluid Mixtures, Phys. Rev. Lett. 51 (1983) 2394–2397. https://doi.org/10.1103/PhysRevLett.51.2394.
[102] A. Robledo, C. Varea, Kinetics of phase change in a model binary alloy, Phys. Rev. B. 25 (1982) 4711–4720. https://doi.org/10.1103/PhysRevB.25.4711.
[103] C. Varea, A. Robledo, Nucleation, spinodal decomposition, and interface motion in the van der Waals fluid, The Journal of Chemical Physics. 75 (1981) 5080–5089. https://doi.org/10.1063/1.441899.
[104] A. Robledo, C. Varea, On the relationship between the density functional formalism and the potential distribution theory for nonuniform fluids, J Stat Phys. 26 (1981) 513–525. https://doi.org/10.1007/BF01011432.
[105] C. Varea, A. Valderrama, A. Robledo, Rigorous interface properties for the van der Waals fluid mixture, The Journal of Chemical Physics. 73 (1980) 6265–6271. https://doi.org/10.1063/1.440123.
[106] A. Robledo, C. Varea, Tight-binding Green’s functions for surfaces, thin films, and solid interfaces. A random-walk theory approach, Phys. Rev. B. 21 (1980) 1469–1488. https://doi.org/10.1103/PhysRevB.21.1469.
[107] A. Robledo, The liquid–solid transition of the hard sphere system from uniformity of the chemical potential, The Journal of Chemical Physics. 72 (1980) 1701–1712. https://doi.org/10.1063/1.439281.
[108] A. Robledo, Pair correlations for a hard core lattice gas against a hard wall, Molecular Physics. 39 (1980) 193–206. https://doi.org/10.1080/00268978000100161.
[109] C. Varea, A. Robledo, Surface electronic Green’s functions in terms of the bulk Green’s function via random-walk theory, Phys. Rev. B. 19 (1979) 1310–1311. https://doi.org/10.1103/PhysRevB.19.1310.
[110] A. Robledo, L. Woodhouse, Multiple trapping of random walkers on periodic lattices, J Stat Phys. 19 (1978) 129–147. https://doi.org/10.1007/BF01012507.
[111] A. Robledo, A.B. Budgor, Random walks, the Ornstein‐Zernike equation, and the condensation of a one‐dimensional lattice gas, American Journal of Physics. 46 (1978) 998–1003. https://doi.org/10.1119/1.11491.
[113] A. Robledo, I.E. Farquhar, Random-walk theory and ordered phases in lattice-gas systems, Physica A: Statistical Mechanics and Its Applications. 84 (1976) 449–471. https://doi.org/10.1016/0378-4371(76)90098-4.
[114] A. Robledo, I.E. Farquhar, Random-walk theory and correlation functions in classical statistical mechanics, Physica A: Statistical Mechanics and Its Applications. 84 (1976) 435–448. https://doi.org/10.1016/0378-4371(76)90097-2.
[115] A.B. Budgor, A. Robledo, On the relationship between continuous time random walks and the non-equilibrium Ornstein-Zernike equation, Physica A: Statistical Mechanics and Its Applications. 85 (1976) 329–346. https://doi.org/10.1016/0378-4371(76)90053-4.
[116] A. Robledo, I.E. Farquhar, Random-walk theory and Ornstein-Zernike systems with extended-core potentials, The Journal of Chemical Physics. 61 (1974) 1594–1595. https://doi.org/10.1063/1.1682143.